We |Inspect Team B:
Al Studio Final Presentation

https://yesweinspect.com/
Presentation Date: TBD

Introductions

Meet Our Team!

BonnieWhite Aissatou Thiombane Nicole Escamilla
CSU Long Beach Arizona State University/UCLA UCLA

Andres Vicente Reshma Sheikh
CSULA Santa Monica College

Our Al Studio TA and Challenge Advisors @

Swagath Babu Corey Levy
Al Studio TA Challenge Advisor

Presentation Agenda

O N s W=

Problem Statement and Our Goal
Business Impact

Approach

Resources

Data Understanding & Data Preparation
Modeling & Evaluation

Final Thoughts

Q&A

Al Studio Project Overview

Construct an ML model able to detect correlations
between mold types and associated symptoms,
enabling predictive insights into likely health
outcomes.

> Qur objective is to build an unsupervised learning model that
will predict symptoms based on mold types and
mMmeasurements.

QOur Goal

> Assist and accelerate possible mold-induced health diagnhoses
INn the future

Business Impact

> Accessible to the general public & health care providers

> Help address the underlying causes of undiagnosed
conditions, rather than merely managing the symptoms

Our Approach

August October
2023 2023
September December
2023 2023
Business Understanding Data Understanding & Preparation Modeling & Evaluation Final Presentation & Share Findings
Spent meetings introducing ourselves Exploring data & cleaning spreadsheets ~ Wrapped up data cleaning and Recording our findings, analyzing our results,
and getting to know our teammates, TA, to prepare data for visualization, preparation to move on to get data and observing visualizations. Wrap up project
and Challenger Advisor. We took this processing, and other preparation model ready. with presentations and sharing our journey.
time to build an understanding of what is methods.

expected from each team member, and
what the desired end goal looks like.

Resources We Leveraged

e Data Cleaning e Visualization
o Python o Seaborn
o Jupyter Notebook o Matplotlib
o Pandas e Modeling
o Numpy o Scikit Learn
e Data Preparation m Random Forest
® @ o Dimension Reduction m Support Vector
A o One-hot encoding Machine
o PCA o Tensorflow
J u pyte r o Standard Scaler m FCNN

4

Data Understanding & Data Preparation

Dataset Overview

Our dataset can be split into a 4 categories
o Location Data
o Symptom Data
o Health Summary Information

o Mold Data
e Some columns provided no new information, so it was removed
o Zip code

m No need for this since we had City and State data
o Symptoms
m All entries had symptoms
Cleaned all rows by removing extra characters and any variations of N/A
Ensured all numerical columns had the same int / float data type for processing

One-Hot Encoding

e Qur data had string columns with multiple symptoms separated by commas, so we had to create a
custom one-hot encoding method

oneHotEncodeSymptoms (symptomDF) :

for column in symptomDF.columns:
systemSymptomList = (df[column]
.dropna()
.str.lower()
.str.replace(" ", "") # Remc
sstr splat(i;)
.explode()
.unique())

for symptom in systemSymptomList:
newColumn = f"{column} {symptom}"
symptomDF [newColumn] = df[column].apply(lambda x: 1 if symptom in str(x).lower().replace(™ ", "") else 0)

systemSymptomList = []

irn symptomDF

rt

Dimension Reduction & Visualization

Our next goal was to explore the cleaned data and see if we would make any initial observations
Normalized our data with standard scaler method in the Mold and Symptom columns

After performing one-hot encoding on all categorical columns, we ended up with a data frame
consisting of 581 rows and 145 columns, so we need a way to reduce the number of columns to be
processed on

We decided to do some research on PCA to achieve this task

We applied PCA to both the mold and symptom categories, keeping at least 80% of the variation

df.head()

Aspergillus Aspergillus Aspergilius Aspergillus Aspergillus Aspergillus Aspergillus Aspergillus
flavusforyzae fumigatus niger ochraceus penicillioides restrictus* sclerotiorum sydowii

-0.104428 -0.073751 -0.346139 -0.055444 -0.068028 -0.158983 -0.101535 -0.084850
-0.104428 -0.073751 -0.348158 -0.055444 -0.067795 -0.198118 -0.101635 -0.084850
-0.104428 -0.072315 -0.357242 0.052017 -0.068028 -0.176772 -0.101535 -0.078989
-0.104428 -0.073751 -0.360270 -0.055444 -0.068028 -0.198118 -0.101535 -0.084850

Modeling & Evaluation

Algorithm Selection

We've begun working on implementing the following algorithms:

e PCA
o Results shown
e K-Prototypes, K-Means
o Inprogress
e Random Forest
o Results shown
e Support Vector Machine
o Results shown
e Fully Connected Neural Networks
o Results shown

Current Findings (PCA)

Principal Component 2

04

03

0.2

01

0.0 1

PCA on Filtered Data

-01 0.0 0.1 0.2
Principal Component 1

0.3

0.4

0.5

Principal Component 2

04

0.3

0.2

01

0.0 1

KMeans Clustering after PCA on Filtered Data | D ™
° Cluster Centers |
e
®
@
PR
2 °
E] o
@
° T
a % Y
o b
‘ e® . 8
°
-01 0.0 01 0.2 03 0.4 05

Principal Component 1

After performing one-hot encoding and cleaning our data by separating symptoms, we performed PCA, generating
clusters that showed the relationship between different molds and symptoms. This was initially done as a way to

reduce dimensionality, visualize relationships, and help with mold to symptom predictions. However, with our data,
we have found that other methods like k-prototype may useful as well

Current FIndings

Correlation between Molds and Symptoms

Through Data Analysis, we found sparse
relationships between our symptoms and
molds, hiding our true potential to predict
symptoms. Therefore, we readjusted to
focusing one individual models to find the
true relationship between one body system
and the molds. This created multiple models
with neater outcomes and coding.

Model Comparison

Description

Model Name

Results

Modeling the

classification
problems

~40% - 55%

discrepancies

Logistic probability of a Easy Low Accuracy
: : : Low accuracy . :
regression discrete binary implementation Assumes linearity
outcome
Modeling the Higher accuracy | Addresses Time / Slow
Random forest output of multiple | than the other discrepancy in -
- training
decision trees models data
Supervised
Support Vector learning algorithm low accuracy Great fo.r Possibility of
machine used mostly for addressing

Underperforming

Model Comparison

Description

Model Name

Results

High Accuracy in
some cases

Fast W/ Parallel

Lots of
hyperparameter
adjustments

output of multiple
decision trees

Ensemble
learning

~80% - 90% on Processing needed, not just
FONN Fully Connected brain related Scalable numerical values
Neural Network. symptoms _
; ; Feature Learning
~30% - 70% on Prone to
others or full overfitting
symptom set
Modeling the High performance | Time consuming
GBM ~50% tuning

Overfitting

T
g,
L 0%,
o X%
[W&X&&
[302X %0
ARSI
AN mm.‘.b
7275 P
o ‘w ., M@\M\. Q&@&
[ﬁ.\owzz& «.%0 e
[P07 8 0068
\\\&...QNW&\Q ..\%Q ()

L 0 et
P78 ¥ S 6 X
P T SR S %

L %, z&\:o@@&@%
[297 0,025 .eo\

O A AT WAN
L r\\OQ\Qo&w‘:om\..\.b\ 000 Q\\
¥ oo
[G0 08)
WA

Parameter Combination Index

(SVM)

Numerically Categorized Location Data, Numerical Mold values predicting One hot encoded symptoms

INne

Support Vector Machi

Model

Tested on: Brain Symptoms, Nervous System Symptoms, All symptoms

Accuracy 49% - 56%

No hyperparameter changes really made too much of a difference

Model Accuracy for Different Parameter Combinations

0.56

Changing variance made no difference

T
n
in
o

T
<
n
o

T
m
10
o

T
o~
n
o

T
—
2]
o

=}
i
o

Adeindoy 3saL AD ueap

Required PCA

No linear trend in data

Increasing prediction labels, no change

All iterations resulted in under 60% accuracy

00
£
©
=

()]
p=

[

[}

)

<
=

Q
©)
©

-

)
NS

]

()]

[

)

O
&=
©

@]
Z

or excluding locational data

Model : Random Forest

Numerically Categorized Location Data, Numerical Mold values predicting One hot encoded symptoms

Tested on: Brain Symptoms, Nervous System Symptoms, All symptoms

e Verysimilar results to SVM
e Same patterns recognized
e No hyperparameter tuning responses or trends surfacing

e [ocation did not have influence, likely because a lack of sample size

MIVUCTT ALLUIAly 1TVl VHITITIHIL raraliicuc Lulnvinauviin

0.575 -] o

: { ‘ ' !
0.550 - \) w?r.
0.525 -

Model Random Forest

y_columns = ['Circulatory_spiderveins' Circulatory_raynaudsphenomenon', 'Cir pry_loworrea o¢ ure', ulatory_cherryan
df['Circulatory'] = df[y_columns]. any(»

X_ coLumns = ['Circulatory’,'Circ ory

y= df['Circulatc

X= df. drop(x imns= X_columns, axis=1)

X_train, X_test, y train, y_test = train_test_split(X, vy,

print('Begin R om Forest Implemer

rf_20_t model RandomForestC13551f1er(riterion="entrop

rf_20_model. flt(X_tram y_traln)

rf_20_predictions=rf_20_model. predict_proba(x_test) [:,1].tolist()
rf_100_model=RandomForestClassifier(« erion='entropy', n_es
rf_100_model. fit(X_train, y_tram)
rf_100_predictions=rf_100_model.predict_proba(X_test)[:,1].tolist()

print('End"')

print('Computing ROC Curve...')

fpr_20, tpr_20, thresholds 20= roc curve(y‘test rf_20_predictions)
fpr_100, tpr_10e0, thresholds_l% roc_curve(y_test, rf_100_predictions)
print('End')

print('F
fig = plt.figure()
= fi'g.'add_subplot(lll)
sns. lineplot(x=fpr_20, y=tpr_20,
sns. lineplot (> ~fpr 100, y=tpr_100,
plt.title("Rec t
plt.xlabel("Fa
plt.ylabel("Tr
blt.Legend(['?. 20 estimators', 'RF with 100 estimators'])
plt.show()

auc_2@=auc(fpr_20, tpr_20)

print/("AUC of the RF model with 2@ estimators is ".format(auc_20)]

auc_10@=auc(fpr_100, tpr 100)
th ", format(auc_100))

True positive rate

Receiver operating characteristic (ROC) curve

1.0 1 —e— RF with 20 estimators .f:i
RF with 100 estimators m:'
)
.,.
vz
0.8 1 o—"
7
04.
/.
0.6 - o
o‘/’
0.4 - ./,-°
o
/ o-®
® -’/
./ /0
0.2 8
¢ '.(‘0—.
//o—o
%
004 ®°
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

More... ,ut_data=(0.3922512783666703,-0.0713570261050833,-0.3279711232064132,-0.0554440820674575, -0. 06802796

input_datal=(0.1516724533764742,-0.0689630757547511,-0.1987749577362561, -0.0508517359727689, -0.06144884
input_data2=(-0.034582120809484,-0.0703994459649504, -0.1634478812405101,-0.0531479090201132, -0.06555494

input_data3=(-0.1044275861292184,-0.0732721863853491, -0.315858982693586, ~0.0554440820674575,-0.06802794
input_data_as_nparray = np.asarray(input_data)
input_data_as_nparrayl = np.asarray(input_datal)
input_data_as_nparray2 = np.asarray(input_data2)
input_data_as_nparray3 = np.asarray(input_data3)
reshaped_input_data= input_data_as_nparray.reshape(1,-1)
reshaped_input_datal= input_data_as_nparrayl.reshape(1,-1)
reshaped_input_data2= input_data_as_nparray2.reshape(1,-1)
reshaped_input_data3= input_data_as_nparray3.reshape(1,-1)
prediction_of_input_rf = rf_100_model.predict(reshaped_input_data)
prediction_of_input_rfl = rf_100_model.predict(reshaped_input_datal)
prediction_of_input_rf2 = rf_100_model.predict(reshaped_input_data2)
prediction_of_input_rf3 = rf_100_model.predict(reshaped_input_data3)
print(prediction_of_input_rf)

print(prediction_of_input_rf1)

print(prediction_of_input_rf2)

print(prediction_of_input_rf3)

Insights and Key Findings

Top Influencial on PC1: Top Influencial on PC2:

Chaetomium globosum: 0.3856785598848369 Acremonium strictum: 0.40576436898211093
Aspergillus versicolor: 0.37945466373278636 Epicoccum nigrum: 0.31694155204980495
Aspergillus sydowii: 0.3671418561467564 Aspergillus restrictus*: 0.29819425967327495
Aspergillus ochraceus: 0.361124391806789 Aspergillus ochraceus: -0.25319796892502494
Aspergillus unguis: 0.3095465890734753 Mucor amphibiorum*: 0.23800159083207065
Scopulariopsis brevicaulis/fusca: 0.2961733809590307 Aspergillus sydowii: -0.23563630024532337
Aspergillus ustus: 0.27200772533117634 Cladosporium herbarum: 0.2160421281174504
Penicillium chrysogenum: 0.17813882082177282 Aspergillus ustus: -0.20750504001597858
Alternaria alternata: 0.15474839421559902 Cladosporium cladosporioides 1: 0.20566992661486438
Acremonium strictum: 0.14628310440546208 Alternaria alternata: 0.19950743211227354

Due to the high occurrence of these molds, it is safe to assume that they will be key indicators in
Predicting symptoms and diseases.

Model : Fully Connected Neural Networks (FCNNSs)

Results from modeling numerical mold values to predict Brain related symptoms:

e High Accuracy Range 84% - 92%
e (Consistently performing well
e Probably due to the small number of prediction labels (5)

Accuracy vs. Run Loss vs. Run

Model : Fully Connected Neural Networks (FCNNSs)

Results from modeling numerical mold values to predict Nervous system related
symptoms:

e Random Accuracy Range 20% - 70%
e Results vary by and extremely wide range

Accuracy vs. Run Loss vs. Run

0.7 A 11.0 4

10.5 4

10.0 4

Loss

0.3 1 9.5 A

9.0 4

Model : Fully Connected Neural Networks (FCNNSs)

Results from modeling numerical mold values to predict all symptoms:

e Random Accuracy Range 20% - 70%
e Results extremely low
e No Accuracy jumping, extremely low
e Trend: The more labels to classify, the harder it is to correctly predict
Accuracy vs. Run Loss vs. Run
0.7 A 11.0 A
0.6 A
10.5 A
0.5
9 ,, 10.01
= 0.4 7]
g 3
g
0.3 9.5
0.2
9.0 A
0.1
2 4 6 8 10 2 4 6 8 10

Model : GBM

Results from modeling numerical mold values to predict all symptoms:

e Accuracy Range 50%
e Seems to be behaving similarly to the other two models

Test Accuracy: 0.4879518072289157
precision recall support

0.42 .56 70
0.58 .44 96

accuracy
macro avg
weighted avg

Random Forest, SVM, and Logistic Regression

Analysis on respiratory and reproductive symptomes:
e Labels: ‘Respiratory’ and ‘Reproductive’ symptom columns
o No one-hot encoding, or location data

e Scores:

o Random Forest: 0.6807228915662651
o SVM: 0.6807228915662651
o Logistic Regression: 0.6626506024096386

10

0.9 1
0.8 1
0.7 1

o

>]

g 041
0.0 -

o

g 06

J 05

o

S 04
0.3
0.2
0.1

Model Results: Respiratory Symptoms

BN Random Forest
mmm Standard Vector Machine
B | ogistic Regression

RF 100 RF 50 RF 20 SVMQ01 SVM1 SVM10
Model

10

0.9 1
0.8 1
0.7 1

z

>]

g 041
0.0 -

o

S 06

J 05

o

S 04
03
0.2
0.1

Model Results: Reprodutive Symptoms

BN Random Forest
Bmm Standard Vector Machine
B | ogistic Regression

RF 100 RF 50 RF 20 SVMQ01 SVM1 SVM10
Model

Final Thoughts

What We Learned @

e Common Machine Learning tools such as Jupyter Notebooks, Python, Pandas, Numpy, Matplotlib,
and Scikit-learn
e Theintegral steps of building a Machine Learning Model
o Data Cleaning, Preparation, Visualization, Modeling, and Analysis
e How to approach an unsupervised model
e Handled potential data overload from one-hot encoding using alternative string handling like
split(), .explode(), .unique().
e Attaining Objectives and Delivering Outcomes through Constructive and Collaborative Teamwork
e Modeling process
o Hyperparameter tuning, outcome record keeping, pattern finding, model architecture
research

Potential Next Steps

e Keep training the dataset on the most successful model architecture: FCNNs
e Deploy model
e Build out a tool for public to interact with

Questions?

