We Inspect Team B: AI Studio Final Presentation

https://yesweinspect.com/ Presentation Date: TBD

Introductions

Meet Our Team!

Bonnie White CSU Long Beach

CSULA

Aissatou Thiombane Arizona State University/UCLA

Santa Monica College

Nicole Escamilla UCLA

Our AI Studio TA and Challenge Advisors

Swagath Babu AI Studio TA

Corey Levy Challenge Advisor

Presentation Agenda

- 1. Problem Statement and Our Goal
- 2. Business Impact
- 3. Approach
- 4. Resources
- 5. Data Understanding & Data Preparation
- 6. Modeling & Evaluation
- 7. Final Thoughts
- 8. Q&A

AI Studio Project Overview

Construct an ML model able to detect correlations between mold types and associated symptoms, enabling predictive insights into likely health outcomes.

Our Goal

➢ Our objective is to build an unsupervised learning model that will predict symptoms based on mold types and measurements.

Business Impact

➢ Assist and accelerate possible mold-induced health diagnoses in the future

 \triangleright Accessible to the general public & health care providers

 \triangleright Help address the underlying causes of undiagnosed conditions, rather than merely managing the symptoms

Our Approach

expected from each team member, and what the desired end goal looks like.

Resources We Leveraged

● **Data Cleaning**

- Python
- Jupyter Notebook
- Pandas
- Numpy

● Data Preparation

- Dimension Reduction
- One-hot encoding
- PCA
- Standard Scaler

● Visualization

- Seaborn
- Matplotlib

● Modeling

- Scikit Learn
	- Random Forest
	- Support Vector Machine
- Tensorflow
	- FCNN

Data Understanding & Data Preparation

Dataset Overview

- Our dataset can be split into a 4 categories
	- Location Data
	- Symptom Data
	- Health Summary Information
	- Mold Data
- Some columns provided no new information, so it was removed
	- Zip code
		- No need for this since we had City and State data
	- Symptoms
		- All entries had symptoms
- Cleaned all rows by removing extra characters and any variations of N/A
- Ensured all numerical columns had the same int / float data type for processing

One-Hot Encoding

● Our data had string columns with multiple symptoms separated by commas, so we had to create a custom one-hot encoding method

```
def oneHotEncodeSymptoms(symptomDF):
   # For every column(body system) in symptom DF columns
   for column in symptomDF.columns:
       systemSymptomList = (df[column]).dropna() # Drop any remaining NaNs (though there shouldn't be any after fillna)
                       .str.lower() # Convert to lowercase
                       .str.replace(" ", "") # Remove spaces
                       \texttt{str.split}(',') # Split by commas
                       .explode() # Explode lists to rows
                       .unique()) # Get unique values
       # For every symptom in the list, create [body_system] [symptom]
       # and for every row enter 1 if symptom string exists in element and 0 if not
       for symptom in systemSymptomList:
           newColumn = f''{column} {symptom}''symptomDF[newColumn] = df[column].apply(lambda x: 1 if symptom in str(x).lower().replace("", "") else 0)
       systemSymptomList = []return symptomDF
```
Dimension Reduction & Visualization

- Our next goal was to explore the cleaned data and see if we would make any initial observations
- Normalized our data with standard scaler method in the Mold and Symptom columns
- After performing one-hot encoding on all categorical columns, we ended up with a data frame consisting of 581 rows and 145 columns, so we need a way to reduce the number of columns to be processed on
- We decided to do some research on PCA to achieve this task
- We applied PCA to both the mold and symptom categories, keeping at least 80% of the variation

Modeling & Evaluation

Algorithm Selection

We've begun working on implementing the following algorithms:

- \bullet PCA
	- Results shown
- K-Prototypes, K-Means
	- In progress
- Random Forest
	- Results shown
- Support Vector Machine
	- Results shown
- Fully Connected Neural Networks
	- Results shown

Current Findings (PCA)

After performing one-hot encoding and cleaning our data by separating symptoms, we performed PCA, generating clusters that showed the relationship between different molds and symptoms. This was initially done as a way to reduce dimensionality, visualize relationships, and help with mold to symptom predictions. However, with our data, we have found that other methods like k-prototype may useful as well

Current Findings

Through Data Analysis, we found sparse relationships between our symptoms and molds, hiding our true potential to predict symptoms. Therefore, we readjusted to focusing one individual models to find the true relationship between one body system and the molds. This created multiple models with neater outcomes and coding.

Model Comparison

Model Comparison

Model : Support Vector Machine (SVM)

Numerically Categorized Location Data, Numerical Mold values predicting One hot encoded symptoms

Tested on: Brain Symptoms, Nervous System Symptoms, All symptoms

- Accuracy 49% 56%
- No hyperparameter changes really made too much of a difference
- Changing variance made no difference
- Required PCA
- No linear trend in data
- Increasing prediction labels, no change
- All iterations resulted in under 60% accuracy
- No difference found between including or excluding locational data

Parameter Combination Index

Model : Random Forest

Numerically Categorized Location Data, Numerical Mold values predicting One hot encoded symptoms

Tested on: Brain Symptoms, Nervous System Symptoms, All symptoms

- Very similar results to SVM
- Same patterns recognized
- No hyperparameter tuning responses or trends surfacing
- Location did not have influence, likely because a lack of sample size

MORE Promised in Diletell Latatlicial commissions

Circulatory Model : Random Forest

y_columns = ['Circulatory_spiderveins', 'Circulatory_raynaudsphenomenon','Circulatory_loworreactivebloodpressure','Circulatory_cherryang1omas','Circulatory_easybruising $df['Circulatory'] = df[y columns].any(axis=1).astype(int)$ X_columns = ['Circulatory','Circulatory_spiderveins', 'Circulatory_raynaudsphenomenon','Circulatory_loworreactivebloodpressure','Circulatory_cherryangiomas','Circulator

y= df['Circulatory']

X= df.drop(columns= X_columns, axis=1)

X train, X test, y train, y test = train test split(X, y, test size=0.33, random state=1234)

THE VALUE OF STATE OF STATE print('Begin Random Forest Implementation...') rf 20 model=RandomForestClassifier(criterion='entropy', n estimators=20) rf_20_model.fit(X_train, y_train) rf 20 predictions=rf 20 model.predict proba(X test)[:,1].tolist() rf 100 model=RandomForestClassifier(criterion='entropy', n estimators=100) rf_100_model.fit(X_train, y_train) rf_100_predictions=rf_100_model.predict_proba(X_test)[:,1].tolist() print('End') print('Computing ROC Curve...') fpr 20, tpr 20, thresholds 20=roc curve(y test, rf 20 predictions) fpr 100, tpr 100, thresholds $100 = \text{roc curve}(y \text{ test}, rf 100 predictions)$ print('End') print('Plotting ROC Curve...') $fig = plt.findure()$ $ax = fig.addsubplot(111)$ sns.lineplot(x=fpr 20, y=tpr 20, marker = 'o') sns.lineplot(x=fpr 100, y=tpr 100, marker = 'o') plt.title("Receiver operating characteristic (ROC) curve") plt.xlabel("False positive rate") plt.ylabel("True positive rate") plt.legend(['RF with 20 estimators', 'RF with 100 estimators']) plt.show() auc 20=auc(fpr 20, tpr 20) print^{("AUC} of the RF model with 20 estimators is {:.3f}".format(auc_20)) auc_100=auc(fpr_100, tpr_100) print("AUC of the RF model with 100 estimators is {:.3f}".format(auc 100))


```
#line6 should predict 1
```
 $[0]$ $[0]$ $[1]$

```
More... jut data=(0.3922512783666703,-0.0713570261050833,-0.3279711232064132,-0.0554440820674575,-0.068027966
   #row10 should predict 0
   input data1=(0.1516724533764742.-0.0689630757547511.-0.1987749577362561.-0.0508517359727689.-0.06144884
   #row14 Should Predict 0
   input data2=(-0.034582120809484.-0.0703994459649504.-0.1634478812405101.-0.0531479090201132.-0.06555496
   #row563 should predict 1
   input data3=(-0.1044275861292184.-0.0732721863853491.-0.315858982693586.-0.0554440820674575.-0.06802796
   input data as nparray = np.asarray(input data)input data as nparray1 = np. as array(input data1)
   input_data as nparray2 = np.asarray(input data2)input_data_as_nparray3 = np.asarray(input_data3)
   reshaped_input_data= input_data_as_nparray.reshape(1,-1)
   reshaped_input_data1= input_data_as_nparray1.reshape(1,-1)
   reshaped input data2= input data as nparray2.reshape(1,-1)reshaped_input_data3= input_data_as_nparray3.reshape(1,-1)
   prediction of input rf = rf 100 model.predict(reshaped input data)
   prediction of input rf1 = rf 100 model.predict(reshaped input data1)
   prediction_of_input_rf2 = rf_100_model.predict(reshaped_input_data2)
   prediction_of_input_rf3 = rf_100_model.predict(reshaped_input_data3)
   print(prediction_of_input_rf)
   print(prediction_of_input_rf1)
   print(prediction_of_input_rf2)
   print(prediction_of_input_rf3)
 \times 0.0s
                                                                                                     Python
[1]
```
Insights and Key Findings

Top Influencial on PC1:

Chaetomium globosum: 0.3856785598848369 Aspergillus versicolor: 0.37945466373278636 Aspergillus sydowii: 0.3671418561467564 Aspergillus ochraceus: 0.361124391806789 Aspergillus unguis: 0.3095465890734753 Scopulariopsis brevicaulis/fusca: 0.2961733809590307 Aspergillus ustus: 0.27200772533117634 Penicillium chrysogenum: 0.17813882082177282 Alternaria alternata: 0.15474839421559902 Acremonium strictum: 0.14628310440546208

Top Influencial on PC2:

Acremonium strictum: 0.40576436898211093 Epicoccum nigrum: 0.31694155204980495 Aspergillus restrictus*: 0.29819425967327495 Aspergillus ochraceus: -0.25319796892502494 Mucor amphibiorum*: 0.23800159083207065 Aspergillus sydowii: -0.23563630024532337 Cladosporium herbarum: 0.2160421281174504 Aspergillus ustus: -0.20750504001597858 Cladosporium cladosporioides 1: 0.20566992661486438 Alternaria alternata: 0.19950743211227354

Due to the high occurrence of these molds, it is safe to assume that they will be key indicators in Predicting symptoms and diseases.

Model : Fully Connected Neural Networks (FCNNs)

Results from modeling numerical mold values to predict Brain related symptoms:

- High Accuracy Range 84% 92%
- Consistently performing well
- Probably due to the small number of prediction labels (5)

Model : Fully Connected Neural Networks (FCNNs)

Results from modeling numerical mold values to predict Nervous system related symptoms:

- Random Accuracy Range 20% 70%
- Results vary by and extremely wide range

Model : Fully Connected Neural Networks (FCNNs)

Results from modeling numerical mold values to predict all symptoms:

- Random Accuracy Range 20% 70%
- Results extremely low
- No Accuracy jumping, extremely low
- Trend: The more labels to classify, the harder it is to correctly predict

Model : GBM

Results from modeling numerical mold values to predict all symptoms:

- Accuracy Range 50%
- Seems to be behaving similarly to the other two models

Random Forest, SVM, and Logistic Regression

Analysis on respiratory and reproductive symptoms:

- Labels: 'Respiratory' and 'Reproductive' symptom columns
	- No one-hot encoding, or location data
- Scores:
	- Random Forest: 0.6807228915662651
	- SVM: 0.6807228915662651
	- Logistic Regression: 0.6626506024096386

Final Thoughts

What We Learned

- Common Machine Learning tools such as Jupyter Notebooks, Python, Pandas, Numpy, Matplotlib, and Scikit-learn
- The integral steps of building a Machine Learning Model
	- Data Cleaning, Preparation, Visualization, Modeling, and Analysis
- How to approach an unsupervised model
- Handled potential data overload from one-hot encoding using alternative string handling like .split(), .explode(), .unique().
- Attaining Objectives and Delivering Outcomes through Constructive and Collaborative Teamwork
- Modeling process
	- Hyperparameter tuning, outcome record keeping, pattern finding, model architecture research

Potential Next Steps

- Keep training the dataset on the most successful model architecture: FCNNs
- **•** Deploy model
- Build out a tool for public to interact with

Questions?

 $\overline{}$